The SAIVE Trial, Post-Exposure use of ivermectin in Covid-19 prevention: Efficacy and Safety Results

Violaine Desert-Henin1,2, Anna Kostova3, Elmozafer Ahmed Babiker2, Audrey Caramel1, Richard Malamut2

1 [VMDH Consulting, Ste Foy, Quebec, Canada]; 2 Medical Centre Medic OOD, Sofia, Bulgaria; 3 MedinCell, Jacou, France

INTRODUCTION

Ivermectin (IVM) is a well-known drug currently used to treat several parasitic diseases that have been present over many decades. Exposure to IVM is one of the drugs explored for its potential therapeutic and preventive role against SARS-CoV-2 infection as several studies had reported its antiviral effects on both RNA and DNA viruses15. Cally et al. demonstrated that a single dose of IVM could control the in vitro replication of SARS-CoV-2. Several mechanisms of action have been suggested for its effect on SARS-CoV-2. These mechanisms could lead to an efficient SARS-CoV-2 prevention, independently of virus mutations2. Post-exposure prophylaxis (PEP) is a method of preventing SARS-CoV-2 infection after a known exposure to the virus that may limit the spread of infection.

METHOD

The SAIVE Trial (NCT03035620) is a randomized, double-blind, multicenter, parallel group, placebo-controlled clinical trial, assessing the efficacy and safety of ivermectin in a post-exposure population. Participants were followed 56 days and RT-PCR tests were performed on days 1, 4, 7, 10, and 28, or when infection was suspected. It was conducted in 22 sites in Bulgaria between March and October 2022. The primary objective of the SAIVE trial was to evaluate the efficacy of a continuous administration of oral ivermectin as post-exposure prophylaxis against SARS-CoV-2 infection in confirmed contact cases. Additionally, this study would further reinforce the safety of continuous exposure to ivermectin, as evaluated in a previous phase 1 study (NCT04627064).

Out of 400 enrolled, 399 participants were randomized in a 1:1 ratio to ivermectin (200µg/kg on day 1 then 100µg/kg/day up to day 28) or matching placebo. Main inclusion criteria was confirmed contact within 5 days with a positive COVID-19 case (assessed by RT-PCR). Primary endpoint was the proportion of confirmed infections between groups from baseline to day 28. To tease, positivity of symptoms and infections after confirmed infection and efficacy as a function of variant type were also assessed during the study.

RESULTS

Demographics

Distribution between groups was well-balanced. One fifth (respectively, 19.5 and 17.1% in ivermectin and placebo groups) of the participants were in the same household as the contact case.

<table>
<thead>
<tr>
<th></th>
<th>IVM</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Mean/Min</td>
<td>Max/Mean</td>
</tr>
<tr>
<td></td>
<td>45/40/3</td>
<td>40/39</td>
</tr>
<tr>
<td></td>
<td>79/79</td>
<td>79/380</td>
</tr>
<tr>
<td>BMI</td>
<td>Mean</td>
<td>Max/Min</td>
</tr>
<tr>
<td></td>
<td>22.4/17</td>
<td>22/8/42</td>
</tr>
<tr>
<td>Gen</td>
<td>Male/Female</td>
<td>Mean/Min</td>
</tr>
<tr>
<td></td>
<td>Same Household</td>
<td>Yes (%) / No (%)</td>
</tr>
</tbody>
</table>

Efficacy

Statistically significant difference was found between active and control groups in terms of risk of infection with SARS-CoV-2 between D1 and D28 post-treatment initiation. Relative Risk Reduction (RRR) was highly statistically significant with 71.5% difference with respect to 30-200 positive cases in ivermectin group and 105/199 in placebo group (mFAS population (399 patients)) with p<0.0001.

A significant delay was observed on Time to Positivity between the groups and most infections occurred between D7 (3 cases in placebo group vs 38 in placebo group) and D10 (25 cases vs 57 respectively) (Hazard Ratio of 0.213 (p-value < 0.0001)).

Safety

No deaths or serious adverse events (SAEs) were reported. Of 173 reported Adverse Events (AEs), most were mild and 3.5% were related to COVID-19. All participants with documented infection received standard care (steroids, anticoagulants – mostly aspirin- vitamins C and D) and were followed until resolution. No participant had severe symptoms, required oxygen, or was hospitalized. There was an excellent tolerance to ivermectin.

Omicron BA.1.1 and BA.5 variants were present during the study and ivermectin demonstrated an equivalent high efficacy whatever the variant with a significant difference (p-value<0.0001). The study demonstrated highly statistically significant evidence in a large, randomized, double-blind, placebo-controlled study that daily oral treatment with ivermectin reduced the risk of infection following exposure to SARS-CoV-2. ivermectin was also shown to be safe in doses and duration higher than currently used in approved indications.

CONCLUSION

Ivermectin demonstrated a significant efficacy in preventing COVID-19 infection in a post exposure setting as compared to placebo group. The lower viral loads observed with ivermectin could potentially indicate a lower risk of disease severity and a lower contagiousness2. We can hypothesize that ivermectin would be a valuable tool in the protection of at-risk populations, in addition to vaccination. Efficacy of ivermectin administration was similar regardless of the subtype of the virus during the trial (60% of infections were related to Omicron BA.5 and 40% to BA.1.1) and the significance of results is equivalent to overall RRR on the whole population in both subgroups. This result may indicate ivermectin efficacy on different variants. This could be due to its non-specific mechanisms of action.

Ivermectin should be investigated in further clinical trials in post-exposure to confirm these results.

The positive outcome of the trial supports the development of a long-acting injectable ILEA of ivermectin for this application, allowing a minimal dosing frequency from a bioerodable subcutaneous depot for several weeks or months.

ACKNOWLEDGEMENTS

The authors are grateful to all participants and all the investigators and their dedicated teams. They also feel indebted to the Data Safety Monitoring Board members.

Contact: communication@medincell.com

REFERENCES

4. Data of Medical Gerlach, Alternation of clinical and virological outcomes during SARS-CoV-2 infection by Ivermectin (Movie Heparin) Molecul Med 2021
5. Jain S et al. The drug spectrum of ivermectin targets the sarcoma virus transport components with anti-Behavioral Antiviral research.